In modern physics, space and time are unified in a four-dimensional Minkowski continuum called spacetime, whose metric treats the time dimension differently from the three spatial dimensions (see below for the definition of the Minkowski metric/pairing). Spacetime is thus not a Euclidean space.
Mathematically four-dimensional space is simply a space with four spatial dimensions, that is a space that needs four parameters to specify a point in it. For example a general point might have position vector a, equal to
This can be written in terms of the four standard basis vectors (e1, e2, e3, e4), given by
so the general vector a is
Vectors add, subtract and scale as in three dimensions.
The dot product of Euclidean three-dimensional space generalizes to four dimensions as
and calculate or define the angle between two vectors as
Minkowski spacetime is four-dimensional space with geometry defined by a nondegenerate pairing different from the dot product:
As an example, the distance squared between the points (0,0,0,0) and (1,1,1,0) is 3 in both the Euclidean and Minkowskian 4-spaces, while the distance squared between (0,0,0,0) and (1,1,1,1) is 4 in Euclidean space and 2 in Minkowski space; increasing actually decreases the metric distance. This leads to many of the well known apparent "paradoxes" of relativity.
The cross product is not defined in four dimensions. Instead the exterior product is used for some applications, and is defined as follows:
This is bivector valued, with bivectors in four dimensions forming a six-dimensional linear space with basis (e12, e13, e14, e23, e24, e34). They can be used to generate rotations in four dimensions.
Geometry
The geometry of 4-dimensional space is much more complex than that of 3-dimensional space, due to the extra degree of freedom.
Just as in 3 dimensions there are polyhedra made of two dimensional polygons, in 4 dimensions there are polychora (4-polytopes) made of polyhedra. In 3 dimensions there are 5 regular polyhedra known as the Platonic solids. In 4 dimensions there are 6 convex regular polychora, the analogues of the Platonic solids. Relaxing the conditions for regularity generates a further 58 convex uniform polychora, analogous to the 13 semi-regular Archimedean solids in three dimensions.
In 3 dimensions, curves can form knots but surfaces cannot (unless they are self-intersecting). In 4 dimensions, however, knots made using curves can be trivially untied by displacing them in the fourth direction, but 2-dimensional surfaces can form non-trivial, non-self-intersecting knots in 4-dimensional space.[10] Because these surfaces are 2-dimensional, they can form much more complex knots than strings in 3-dimensional space can. The Klein bottle is an example of such a knotted surface. Another such surface is the real projective plane.
SO, in short imagining the 4th dimension is like liking imagining a new unseen color. both seem a bit higher than human's thinking limitations.